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The efficiency of two different algorithms of hierarchical force calculation is discussed. Both 
algorithms utilize the tree structure to reduce the cost of the force calculation from O(NZ) to 
O(N log N). The only difference lies in the method of the construction of the tree. One algo- 
rithm uses the act-tree, which is the recursive division of a cube into eight subcubes. The other 
method makes the tree by repeatedly replacing a mutually nearest pair in the system by a 
super-particle. Numerical experiments showed that the cost of the force calculation using these 
two schemes is quite similar for the same relative accuracy of the obtained force. The con- 
struction of the mutual-nearest-neighbor tree is more expensive than the construction of the 
act-tree roughly by a factor of 10. On the conventional mainframes this difference is not 
important because the cost of the tree construction is only a small fraction of the total calcula- 
tion cost. On vector processors, the act-tree scheme is currently faster because the tree con- 
struction is relatively more expensive on the vector processors. % 1990 Academic Press, Inc. 

1. INTR~OU~TION 

The most time-consuming part of an N-body code is the force calculation. A 
naive approach requires O(N’) computing cost, which makes the simulation with 
N> lo4 rather unpractical even on the fastest supercomputers. Recently, several 
“tree” algorithms have been developed which map a hierarchical tree structure on 
an N-body system (Appel [l], Jernigan [2], Porter [3], Press [4], Barnes and 
Hut [S], henceforth BH, Benz, Bowers, Cameron, and Press [6], henceforth 
BBCP). In these algorithms, the force from a group of distant particles is 
approximated by a multipole expansion; typically an expansion up to the quad- 
rupole order is used. Tree structures provide a systematic way of performing this 
approximation, thereby reducing the cost of the force calculation from O(N2) to 
O(N log N). The important advantage of these tree schemes over other fast schemes 
such as particle-mesh or particle-particle particleemesh schemes is that tree 
schemes are gridless, so their spatial resolution is not limited by the mesh size. In 
addition, unlike the P3M scheme, the efficiency of tree schemes shows only weak 
dependence on the spatial structure of the system. 

Two very different approachs have been used to construct the tree. In the BH 
scheme an act-tree is used. An act-tree is formed by recursively subdividing a cube. 
On the other hand, most other approachs rely on forming the tree by creating 
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“clumps.” In BBCP, the mutually nearest pairs are repeatedly replaced by nodes, 
until there remains only one node. 

The BH algorithm has been extensively analyzed both numerically and theoreti- 
cally [7, S]. No such study on the nearest-neighbor schemes has been published 
yet. 

Here we will present an empirical comparison of these two schemes. In Section 2 
we will briefly describe these two schemes. For more details see [S-7]. In Section 3 
we will give the result of the comparison of these two schemes for various 
parameter choices. We mostly discuss spherically symmetric systems. The tree con- 
struction for the BBCP scheme is a factor of order 10 more expensive than that of 
the BH tree. However, this difference is not important on conventional mainframes 
or workstations since the cost of the tree construction is trivial for either algorithm. 
The error and efficiency measurements obtained for BH scheme are in close 
agreement with those of [7, X]. The relative accuracy of the BH and the BBCP 
force calculation algorithms are quite similar. 

In Section 4 we discuss the performance of these algorithms on vector/parallel 
computers. The BH scheme is proven to be efficient on a wide variety of machines 
[9913]. The force calculation using the BBCP tree can be vectorized/parallelized in 
the same way as the BH scheme; we are actually able to use the same code for the 
force calculation in both schemes. Thus the efficiency and cost of vectorized calcula- 
tions is similar for both schemes, except for the small difference caused by the 
difference in the tree geometry. However, the construction of the BBCP tree has not 
been effectively vectorized yet. This difference results in a fairly large difference in 
the CPU time. A vectorizable algorithm for the nearest neighbor search might be 
able to reduce the difference in the CPU time. 

2. DESCRIPTION OF THE ALGORITHMS 

2.1. The BH Tree Construction 

Tree construction in the BH scheme is quite simple. First we create a cube that 
is large enough to contain all particles in the system. Then we recursively subdivide 
the cube into eight sub-cubes, until each cube contains one or no particle. Figure 1 
shows a BH tree for a two-dimensional case. The largest cube corresponds to the 
root node of the tree and sub-cubes of a cube form child nodes of the node corre- 
sponding to that cube. Barnes and Hut [S, 81 originally used a very different 
scheme to construct the tree. Their scheme is somewhat faster and requires less 
memory, at least on a conventional mainframe. However, their scheme is difficult 
to vectorize and our scheme is vectorizable [12]. Moreover, present super- 
computers have very large amounts of memory-or they are far too slow for 
calculations large enough to consume all of their memory-and the difference in the 
memory requirement is of little importance. 

On conventional mainframes or workstations, the cost of the BH tree construc- 
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FIG. 1. The quad-tree for the random distribution of 100 particles in the square of the unit size, 

tion is less than 5% of that of the force calculation, even for the relatively low 
required accuracy. For the accuracy of practical levels, the cost of the BH tree 
construction is less than 2%. 

2.2. The BBCP Tree Construction 

In the BBCP scheme, the tree is constructed in a bottom-up order, by replacing 
the mutually nearest pair with a node. The algorithm is schematically expressed as 
follows: 

subroutine maketree ( ) 
initialize the list of active particles list so that it contains all particles 
while (the list contains more than one particle) 

foreach i in list 
nnb(i) = nearest neighbor of i 

endforeach 
clear the list of mutual nearest pairs pairlist 
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foreach i in list 
if (nnb(nnb(i)) eq. i) then 

append pair i, nnb(i) to pairlist 
endif 

endforeach 
foreach (i, j) in pairlist 

remove i and j from list 
create the parent node for i and j 
append the parent node to list 

endforeach 
endwhile 

Figure 2 shows a BBCP tree for the two-dimensional case. The most expensive 
part of this algorithm is the search for the nearest neighbor. BBCP gives a fairly 
efficient scheme to find nearest neighbors for all particles in an N-body system, with 
the cost of order O(C, N + C, N log N). We used this scheme for all calculations in 
this paper. It should be noted that this scheme is not quite optimized yet. For 
example, the monotonic logical grid scheme [14] may show better performance in 
the nearest neighbor search. 

FIG. 2. The BBCP-tree for the random distribution of 100 particles in the square of the unit size 
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In the current implementation, the tree construction takes about 40 s for a 2048 
particle Plummer model on a Sun 3/60 with 68881. The force calculation takes 
about 150 s on the same machine for an accuracy of - 1%. Thus on workstations 
such as SUNS, the cost of tree construction is hardly crucial. 

2.3. The Force Calculation 

The basic algorithm for the force calculations is the same for both types of trees 
and is expressed as follows: 

subroutine treeforce (i, node, force) 
if (node and particle i are well separated) 

force = force from the total mass in the center of mass of node 
else 

force = 0 
do j = 1, number-ofLchildren( node) 

call treeforce(i, child( node, j ), child-force) 
force = force + child-force 

enddo 
endif 
return 

The total force on particle i is obtained by calling treeforce(i, root, force). The 
condition to determine if a node is well separated from a particle is 

1 
-<O 
d 

(BH) 

R 
;<O WCP), 

where I is the size of the cube in the BH tree corresponding to the node, R is the 
“radius” of the cell defined in Eq. (A8) of BBCP, d is the distance between the cen- 
ter of the mass of the node and the particle, i3 is the parameter which controls the 
accuracy as well as the calculation cost. These criteria are not optimal and it is 
possible to improve the accuracy without increasing the calculation cost (see 
Appendix B). However, the loss of efficiency is not large; less than a factor of two. 
Therefore we adopted the above original criterion in this paper. 

This algorithm is recursive and not well suited for the implementation by Fortran 
77 or vectorization. For different modifications of this basic algorithm see [ 10-121. 
It is interesting that all these three schemes vectorize different aspects of the force 
calculation, and therefor can be applied simultaneously. For a shared time step 
integrator in which the forces on all particles are calculated at each timestep, the 
combination of the Makino’s method [12] and Barnes’s method [lo] will 

S8l.R8.:2-IO 
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probably show the best performance. For a individual time step scheme, the 
combination of Makino’s method [ 121 and Hernquist’s method [ 111 is relatively 
easy to implement and would probably show reasonable performance. 

3. COMPARISON OF THE EFFICIENCY 

3.1. Comparison of the Amount of Computation 

Figure 3 shows the error in the force as the function of the accuracy parameter 
0 for both BH and BBCP trees. Random realizations of the Plummer model are 
used for the N-body system. The error is defined as 

IF tree - Fdxectl e= 
IFdirect ’ 

(2) 

where F,,,, is the force obtained by the tree algorithm, Fdirect is that obtained by 
the O(N*) direct summation. 64-bit arithmetic is used throughout the experiment. 
We plot the r.m.s. error 

(3) 

where N is the total number of the particles in the system and e, is the error in the 
force on particle i. We showed the error of the potential and the force, for both of 
the monopole and quadrupole calculations. 

The BH tree is more accurate than the BBCP tree for the same value of 0. 
However, this difference is mainly because of the difference in the definition of the 
accuracy parameter. For BH scheme, we used the length of the one side of the cube. 
For BBCP scheme, we used the radius of the node. Thus, there is a difference of 
roughly a factor of 2 in the representative size used in these schemes. 

Figure 4 shows the error as the function of the average number of force terms 
evaluated in the force calculation N,,,,,. Here, the BBCP scheme shows a com- 
parable accuracy for the same number of terms. To be precise, the BBCP tree gives 
significantly more accurate values for the potential, especially with quadrupole 
correction. However, there is no such clear difference in the obtained gravitational 
force. It seems that the BBCP tree tends to be more accurate than the BH tree 
when N ,,,,,/N is large. With practical number of NtermS, however, the difference in 
the accuracy between these two schemes is small. When only the monopole term is 
used, the BH tree tends to be more accurate. 

It is difficult to explain these differences because there is no simple theory about 
the behavior of the BBCP tree. In Appendix A we give a simple model for the 
behavior of the calculation cost and the error in the case of the BH tree. 

The difference in the obtained accuracy is not so large as to be the decisive factor 
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FIG. 3. The r.m.s. error of the gravitational force and potential as a function of the accuracy 
parameter 0. Open symbols indicate the error of the BH tree and filled symbols indicate that of the 
BBCP tree. Triangles are for N = 1024, squares are for N = 4096, circles are for N = 16384. The Plummer 
model is used as the particle distribution: (a) force error with quadrupole term; (b) force error with 
monopole; (c) potential error with quadrupole, (d) potential error with monopole. 

to prefer one algorithm over the other, because other factors, especially the 
efficiency in the vector pipeline, can easily be more important. In the following 
subsections we will discuss the actual cost in some detail. 

3.2. Timing Results 

Here we give the result of the CPU time comparison between the BH tree and 
the BBCP tree. We used a Plummer model with N= 8192 as the test N-body system 
on the scalar mainframe and N = 16384 on the vector processor. Table I shows the 
average CPU time per one force calculation on a FACOM M-360 mainframe and 
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FIG. 4. Same as Fig. 3 but plotted as the function of the average number of force terms evaluated 
in the force calculation. 

a FACOM VP-400 vector processor. On both machine the code based on Makino’s 
[12] vectorizing scheme is used. Therefore the timing on scalar machine may not 
indicate its best performance. 

It is not surprising that the BBCP scheme takes considerably longer time. The 
reason is that the BBCP tree is usually deeper than the BH tree, because the former 

TABLE I 

CPU Time per Interaction 

Scalar (M-360) Vector (VP-400) 

BH 
BBCP 
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TABLE II 

CPU Time for the Tree Construction 

Scalar (M-360, N= 8192) Vector (VP-400, 
N = 16384) 

BH 2.4 s 0.39 s 
BBCP 38 s 22.1 s 
Force (BH) 230 s 4.39 s 

is the binary tree and the latter is the act-tree. Therefore, the number of nodes to 
be opened up in the BBCP tree is significantly larger than that in the BH tree. To 
be precise, the number of nodes that are opened up is always equal to N,,,,, - 1 in 
the BBCP tree. In the BH tree, the number of nodes to be opened up depends on 
the distribution of particles in the system, because the BH tree is not the spanned 
tree. Experiments indicate that it is about 0.2N,,,,,. This difference is not negligible 
either on scalar processors or on vector/parallel processors. 

Table II shows the time required for the tree construction. The time for the force 
calculation to the average accuracy of about 1% (0 = 1, BH tree) is also shown for 
comparison. The cost of the BBCP tree construction is significantly larger than that 
for the BH tree. We should note that there is relatively large room for improvement 
in the tree construction algorithm of BBCP tree. Roughly 90% of the CPU time 
is spent in the nearest neighbor search. In the current implementation the tree is 
constructed from scratch at each time step, and the nearest neighbors are searched 
at each iteration of the tree construction algorithm. It should be possible to recycle 
the old nearest neighbors in some way. Moreover, it is not necessary to reconstruct 
the tree each times. Typically the reconstruction of the tree is necessary for only 
once in ten or more time steps [ 151. Thus the cost of the tree construction can be 
reduced by a factor larger than ten. Thus at least on conventional scalar machines, 
the cost of the tree construction is negligible even for the BBCP tree, unless we use 
the individual time steps (e.g., Hernquist and Katz [16]). 

4. SUMMARY 

In this paper we discussed the efficiency of the two different tree algorithms. The 
conclusion is that there is no significant difference in the calculation cost, except 
that the construction of the BBCP tree is currently more expensive. Intuitively, 
force calculation using the BBCP tree would seem to be more efficient than force 
calculation using the BH tree, because the former tree appeal to more naturally 
reflect the clustering in the system as suggested in [4, 61. However, this effect tur- 
ned out to be relatively small compared to other factors such as the difference in 
the algorithmic efficiency of the tree construction and the vectorizability of the algo- 
rithm. 
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APPENDIX A: THE SCALING OF THE CALCULATION COST AND THE ERROR 

Here we give an intuitive explanation of the scaling law for the average error and 
computing cost of the BH-tree. The behavior of the BBCP tree is more difficult to 
analyze rigorously and not discussed here. We consider a system of N particles ran- 
domly distributed in a cube of the unit size. With a realistic particle distribution the 
theoretical treatment becomes much more diflicult and we will not try it here. To 
simplify the discussion, here we discuss the number of terms and the error evaluated 
at the center of the cube. We assume 

(Al 1 
N=8”, 

and that the tree is strictly uniform, i.e., the tree is the spanned tree of the depth 
n. In practice, the tree is not strictly uniform even in the case of the uniform particle 
distribution, because of local fluctuations. For example, average distance between 
the components of the closest pair in a N-body system is proportional to N-2’3, 
implying that the deepest level of the tree is 2 log, N instead of log, N. 

It is relatively straightforward to include the effect of local fluctuations strictly. 
However, it is rather tedious and does not change the conclusion at least when 
0 > N ~ ‘j3. Thus here we neglect local fluctuations. 

The average number of nodes in the level 1 which requires subdivision according 
to the criterion (1) is 

4rc 
$F’ (0>2-!+‘), 

N dw,/= g(l, 0); ep3, (2-‘<e<2-‘+‘), (A21 0, (e-c2-‘), 

where g(l, 0) is a positive function that does not exceed 1. The number of the nodes 
in level 1 on which we apply the multipole approximation is obtained by subtracting 
the number of the node in level I that are subdivided from the number of the 
children of the divided nodes in level I- 1, that is, 

N term,/=8Ndiv,l-1 -Ndiv,/ 

28~ 
--+ (e>2-‘+2), 

28~ 
2: 3 e-3g(i- 1, e), c-I+’ <e<2-‘+2), 

0, 

(A3) 
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FIG. Al. The number of the force terms per one force calculation plotted as a function of the 
accuracy parameter 8. The particle distribution is the uniform distribution within a cube. The number 
of particles in the system is 16384. The solid line indicates the theoretical estimate and the open squares 
indicate the experimental value. 

The total number of the terms for the force calculation is thus 

N 28(n - 1.5 + log, Q) P3 
3 

N 318-3 log,, ;. (A4) 

FIG. A2. Same as Fig. Al but the r.m.s. error of the obtained force is plotted. 
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To obtain Eq. (A4), we assume 

g(l, 0) = const = 0.5. (A5) 

Equation (A4) cannot be applied when fI 5 2 -~“+ 1.5. Figure Al shows the number of 
terms for a 16384-body system with a uniform random distribution of particles in 
a cube. Solid line indicate the theoretical estimate of (A4) and circles indicate the 
measured number of terms averaged over all particles. The theoretical estimate 
shows reasonably good agreement with the measured value in the range 8 > 0.2. 

The leading term of the force error comes from the lowest order term of the 

multipole expansion truncated. As discussed in [8] in detail, with the BH tree the 
average magnitude of this lowest term is proportional to square root of the number 
of the particles in the cell when the system can be regarded as homogenous, because 
the quadrupole and the octapole moments vanishes in the continuous limit. Thus, 
if the system is homogeneous, the magnitude of the error of the force on a particle 
from a node in the case of the center-of-mass approximation can be estimated as 

e a 82dp2N~f2, (A61 

where 0 is the accuracy parameter defined in Eq. (1 ), d is the distance between the 
particle and the node, N, is the number of particles in the node. Here we assume 
that all particles have an equal mass. From Eq. (1) it is clear that the average 
distance of the nodes in level I is proportional to the size of the box. Thus we obtain 

dac. 
6 (A7) 

The average number of particles in a cube is proportional to the volume of the 
cube, i.e., 

N a2m3’. P (‘48) 

By applying (A7) and (A8) into (A6), we obtain the average error from one node 
as the function of the level of the node 1 and the accuracy parameter 8, 

e(1, Q) = ce42lf2. (A9) 

Now we can estimate the total error, which is expressed as 

(e2)1/2= { i N,,,,,,Ce(l, 0)1’)“’ 
I=0 

(AlO) 
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where C, is a constant. When the quadrupole moment is retained, (A6) is replaced 
by 

e a 83d-2N’/2. P (All) 

and the total error is expressed as 

(A121 

Figure A2 is shows the experimental error and the theoretical one for the same 
N-body system as is used in Fig. Al. The value of C, is chosen so that the 
theoretical estimate is close to the experimental result. These two show quite good 
agreement. 

APPENDIX B: MORE EFFICIENT OPENING CRITERION 

In this paper we used the opening criterion of the form 

where d is the distance between the node and the particle, 1 is the representative size 
of the node, and 0 is a constant parameter. The above inequality is a conservative 
criterion in the sense that it assures that the local error will not exceed an certain 
upper bound. However, it is not necessarily an optimal one in view of the computa- 
tional cost. The criterion Bl poses the upper bound on the local relative error. On 
the other hand, to minimize the calculation cost to obtain a fixed accuracy, we 
should control the absolute local error of each force term to the same order. 
The average absolute error of the force from one node is given in Eq. (A6). By 
eliminating 8 we obtain 

(monopole) 
(quadrupole), 032) 

where A and B are some constants. Thus, the opening criterion to keep the average 
local error to a constant elim is 

d> (Ae,i,)p”4 Nj*l”’ (monopole) 

d> (Be,i,)p”5 Nj/1013’5; (quadrupole). 
(B3) 

Figure Bl shows the average error in the force as a function of the number of force 
terms for the original criterion (Bl) and the modified criterion (B3). The BH tree 
on a 16384-body Plummer model is used. The modified opening criterion gives the 
average error smaller than that of original one by a factor two or more. 
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FIG. Bl. The r.m.s. error of the force as the function of the number of force terms in the case of the 
BH tree. Open squares indicates the error for the force obtained with original opening criterion. Crosses 
are for the modified criterion (B3). The Plummer model with N = 16384 is used. 

In the homogeneous limit, the number of particles in a cell is proportional to its 
volume, i.e., 

N, cc I’. (B4) 

From (B3) and (B4) we obtain 

dot 
1718 (monopole) 
19’10 (quadrupole), 

10-l 

82 1 -2 I 
10 

10-3 

>” -4 qm 10 
r 

FIG. B2. Same as Fig. Bl but for the BBCP tree and criterion (88). 

035) 
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or, by introducing the opening criterion e(l) = l/d, 

O(d) = 
8,l 1’8 (monopole) 
e,1 l/l0 (quadrupole), WI 

where 8, is the opening angle at d= 1. Equation (B6) implies that the opening angle 
for the nearby nodes is effectively smaller than that for the far nodes in the case of 
the modified criterion. The reason why nearby nodes requires smaller opening angle 
is that the average error from nearby node is larger than that from far nodes, when 
constant opening angle is used, as shown in (A9). 

In practice the criterion (B3) is rather dangerous and should be used in combina- 
tion with the original criterion. The reason is that the convergence of the multipole 
expansion is not guaranteed for large cells, since the criterion (B3) leads to a too- 
large opening criterion for large cells. It should be also noted that, strictly speaking, 
(B2) holds only if the distribution of particles within the cell is homogeneous (see, 
however, [S] ). 

In the case of the BBCP tree, it is not easy to derive a theoretically optimal open- 
ing criterion. Originally BBCP used the criterion (Bl) with I recursively defined as 

I= max(l, + rl, I, + r2), (B7) 

where 1, is the size of the child i and ri is the distance between the center of the mass 
of the node and that of the child i. The size of a particle is defined as 0. This 
criterion is, however, clearly not optimal. Nodes in the lowest level that contain 
only two particles always have the maximum possible quadrupole moment 
measured in the unit of 12. Therefore, it seems desirable to apply somewhat 
modified “size,” so that the size of the lower nodes are effectively larger than that 
determined by (B7). We found that the following modified “size” gives more 
accurate force at the same calculation cost. 

I= max(~,,,,, kr, kr2), 038) 

where I,,,, is the size of the node defined by (B7), k is a constant parameter larger 
than 1. Figure B2 shows the error as the function of the calculation cost for both 
the original and modified criterion with k = 1.5. This value is chosen as one example 
and we have not yet investigated the optimal value for k. The modified criterion 
gives the accuracy roughly factor of two better than the original criterion. 
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